34

%2

e AN %)

WiILHIC

F ooV TREATE BEIR7ZG THBIMNDRBFEL (Ee S
BOEBEARREEZ T FryY CIELDBIHERRALEDDEEIEE
L TWB.ZDEED—DEL T BHERICF vy /DY —ILEm
ZFHEL TH5-TVB,

IOy AtRKDSE Tov—T AT —T 2 XU TTL R,
TXIAHFEEEDEEDHAABRICHED O TVBRFERIFE
FRICERER > THE-THN. ZDHRTHT TISFHEZRER TL TS
EENISIE. EFHAZH5 TS,

FUdv (1B ISD)DEEICIE, F Y DXModelinky —ILDFF
% EHEL TH5 o7 FHAHEIE D N—X (2. 1S09126 Tt hZh B
BB CEARMFRECHIILETRT . FERS M BRIELT
WBIERARHY RIRAJBETH D LR HEREM. BRYEL TVWB1E
FABDERE T IS LR TIFBRERE. T7—-DANEH IR
TEBIELER TR 2 hOFERICE T 3ERAM. V—ILD

1. ISD#(FY) >+) DY — IV XModelink] 0 FE i &
LI, BRI ERRIBIEICZ>TY—IVETHEL THE- R TH S,

RFEOLRIK & F1&

RIEHEDEINEERT EE. T —2BRLEVWRDBER 58
MR TOVHEHLARTVAEEERTIFRENSEEEL (K15
HB) 2 COBEBLSNCH BRHNESDo/oR B oo A &
TINRERIUIEENDBRELS 51, S AL FIRTO L RDEHEF
BRICBAL T FERICESTFM A B RELLIZEN TE I LrL. 2D
DHREEBETZALNERONIOT.Y—ILBEDRER L. B
MEE] _EICRETEVWER D FFEMICAAL Tt vy YWEB~—TUh5
47 A—RA[RERD T BIFSEICLTHEL L,

F TITHLIHE EEORERAFE MEMRICEKRERE >
THOW Y—ILDEHEi %A EHEL TV 3. S EE L, T TCIChENILR
PAETCHINZHAADERRICHEL. SH TR LR EE
BBZEN TEI S HIE. I—Oy/SRILKD A EST T T DEE
~NELBEEEERL T,

Y— L ERE (Xmodelink) BT
1 2 3 4 5 1~5
B I5H B [peEn] ma [vesn] B | #E
1 | ERMICIEMCEIRERETHL (FEBES M) Ease of learning 3 3
2 | BMELTWSEERABHEIRAIEETH S (BERETM) Functionality 4 4
3 | BRELTWSEEABTHERRBITTES (BREI%IEMY) Time effectivene 5 5
4 | IS—DERENTES (IS5—EEM) Comprehension of error 4 4
5 | {EAM Usability 5 5
6 | RIGASKL (MERE) Performance 3 3
7 | TABELBEVWRLELAHSD (EEEME)Reliability 4 4
8 | RBWL-HLAS I1FRE (3FEE) Favorability 4 4
9
10
1—YEZ
St BEEET BRSOV TRALTLZAL, FEEAE
Fhot-m YRR 4 o
Useful towards the identification of design issues in the development process. f
MHETOEROHRFEERICELTIE. FX 5, {5t 0 BEMEE —— R
WEZEITDR teak TS
Little documentation in English. il
FHEORF AU DLLAELY,

[=1]

35

2. BRFEL F—b
BHOY—IVFHE T, A SVEBOHR T RBORREIALLF—IELEo TS,
SENRERUTESNTHS,

Abstract
This brief report provides feedback of an evaluation performed by ISD to the Xmodelink SystemC Tool.
It also itemizes possible extensions that also aim towards advanced visualization.

1 XModelink Evaluation Process

1.1 Purpose and Main Components of the Tool
The purpose of the XModelink Tool is to provide some assistance to the SystemC developer on
identifying the functionality of his SystemC design throughout the development process while also
detecting bugs early in the lifecycle. The tool is composed of two sub components:

- the thread viewer illustrating SystemC threads during simulation
- the ved viewer illustrating signal traces that are stored in ved waveforms.

1.2 Test Environment
Before evaluating the XModelink Debugging Tool, Microsoft Visual Studio 2005 and systemc-2.1 were
installed on a Windows Workstation.

1.3 SystemC Benchmarks used
The first step towards examining the usefulness of the Tool involved running Tutorials 1 and 2
provided with CATS' XModelink Installation, followed by using the tool on other ISD SystemC designs.

In Tutorial 2 of installation there are three blocks a test module, data module and transceiver module.
The test module feeds a transceiver with data values incremented by 2 on each edge of the clock
cycle. The test data is sent from the transceiver to the data module, while the latter (data module)
saves this data on a local variable. Signals entering and exiting the transceiver module are traced on
a waveform.

The vcd viewer allows the user to observe traces that were inserted in the SystemC design.

L PRty LTS R RERTTE LTI LTy g s

L (. L L L L] LN

[Figure 1.1] XModelink vcd viewer — Tutorial 2

36

In Tutorial1, there are once again three blocks the test module, data module and transceiver module.
This time communication between modules is performed using threads. Testmodule sends test data
to transceiver module and initiates a notification start. This notification goes both to to transceiver
and data modules. With the aid of additional events, the Transceiver forwards input data to the data
module while the latter saves it to a local variable.

The XModelink viewer in this case allows the SystemC developer to view the execution of threads in
an easy to understand graphical manner.

[Figure 1.2] XModelink thread viewer — Tutorial 1

On the second phase of evaluation the product was used in the debugging of a complex NoC
architecture. The design was compiled and ran under Visual Studio and design execution was
monitored using sc_traces of signals and events. The XModelink thread viewer was found
particularly useful in this case. It reveal bugs that were not obvious at first sight during development
and required visualization for understanding of how problem occurs. Details on the NoC architecture
however cannot be made public.

1-4 General Conclusions and Extensions
The XModelink tool was used to evaluate provided a set of tutorials as well as designs that reside to
company's IP. The evaluation showed that XModelink allowed in depth understanding of complex
SystemC execution revealing design errors early in the design process in a clear manner. Some fresh
ideas for possible extensions to Xmodelink tool especially towards data introspection capabilities are
listed below.

The SystemC debugger can be extended towards SystemC-AMS modeling, providing ultimately a
unified configurable environment applicable to interoperable software, digital, discrete-time/event and
analogue/RF macroarchitecture models. This environment should provide enriched testing of models
based on non-intrusive monitoring and powerful debug/analysis facilities providing system-level
exchange of information between the models and the designer at different levels of abstractions.

For large multicore SoC models, an integrated debugging environment that facilitates system
designers in simulating, debugging, and visualizing SystemC models should integrate efficient system-
level debugging with advanced design space exploration and visualization features.

37

More specifically, efficient system-level debugging must combine user model error detection,
diagnosis (understanding, localization) and correction with SystemC-aware debugging based on
kernel visibility, e.g. using non-intrusive abstractions of internal signals, ports, events, processes and
modules. In addition, advanced model design space exploration and system model and platform
visualization features must provide simulation displays at different abstraction levels, history, visibility
of interactions, multiple hierarchical views, status/event reports, high-level model and system power-
performance metrics and animation features with monitor/trace controls, model-specific
command/control messaging, and save/restore/traceback functionality.

WEB Y1 M C T894 2 — 4 D&Ml LF—P RAFEFE

- CDMICEEL L Y—ILD LR—b % 4 HCE |
http://www.zipc.com/instance/

